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Gastric cancer and gene copy number variation: emerging
cancer drivers for targeted therapy
L Liang, J-Y Fang and J Xu

Gastric cancer (GC) is among the most common malignancy in the world with poor prognosis and limited treatment options. It has
been established that gastric carcinogenesis is caused by a complex interaction between host and environmental factors. Copy
number variation (CNV) refers to a form of genomic structural variation that results in abnormal gene copy numbers, including gene
amplification, gain, loss and deletion. DNA CNV is an important influential factor for the expression of both protein-coding and non-
coding genes, affecting the activity of various signaling pathways. CNV arises as a result of preferential selection that favors cancer
development, and thus, targeting the amplified 'driver genes' in GC may provide novel opportunities for personalized therapy. The
detection of CNVs in chromosomal or mitochondrial DNA from tissue or blood samples may assist the diagnosis, prognosis and
targeted therapy of GC. In this review, we discuss the recent CNV discoveries that shed light on the molecular pathogenesis of GC,
with a specific emphasis on CNVs that display diagnostic, prognostic or therapeutic significances in GC.
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INTRODUCTION
Gastric cancer (GC) is the fifth most common malignancy and the
third leading cause of cancer death worldwide.1,2 With a 5-year
survival rate merely ranging from 25 to 35% in advanced GC,3–5

more than 1.1 million patients die from GC every year.6 Although
the decrease of incidence and mortality rates in GC has been
reported because of a lower prevalence of Helicobacter pylori (Hp),
lower salt intake and a higher consumption of fresh fruits and
vegetables,7 GC still remains a main clinical challenge as many
cases are diagnosed in advanced stages with limited treatment
options and poor prognosis.8 Although therapeutic methods are
improving in surgical combined with radiotherapy and che-
motherapy, the benefits for advanced GC are still not optimistic.
The improvements in early diagnosis and the treatment of the GC
may continue to be the most effective strategy for improving
patient survival. Thus, seeking for more sensitive detecting
approaches and effective drugs, particularly those targeting
cancer progression mechanisms, is urgently needed.
A recent phase III randomized study (ToGA) revealed that the

addition of trastuzumab to chemotherapy improved survival in
patients with advanced GC with HER2 gene amplification.9 It not
only laid the foundation of gene detection in the diagnosis and
treatment of GC, but also indicates the potential effect of targeted
therapy against gene copy number variations (CNVs) in GCs.10,11

CNV refers to a form of genomic structural variation that results
in abnormal or, for certain genes, a normal variation in the number
of copies of one or more sections of the DNA.12 DNA CNVs include
gene amplification, gain, loss and deletion. In addition to gene
mutation, CNV has a significant role in tumorigenesis in many
cancers, such as GC,13 ovarian cancer,14 hepatocellular carcinoma,15

testicular germ cell tumors,16 colorectal carcinoma,17 bladder cancer18

and so on. The accumulation of CNVs during gastric oncogenesis
may be a result of preferential selection by which transforming
cells gain evolutionary advantage. The copies of apoptosis effector
genes are often lost during cancer development, in comparison
with the frequent amplification of proliferation-related genes.19 A
recent study on 183 primary GC samples suggested that some
established or potential anticancer drug target genes exhibited
high levels of CNVs, including HER2, TUBB3 and TOP2A.20 Given
the indicative value of CNVs in deregulated signaling pathways,
CNV may provide useful information for the molecular subtyping
of GC and optimization of therapeutic strategies.21 Increasing
evidence showed that CNV genes are promising biomarkers and
therapeutic targets in GC, which can be detected by various
methods including flourescence in situ hybridization, array
comparative genomic hybridization and single nucleotide poly-
morphism arrays.
Although a number of review articles have focused on the roles

of specific genes that are relevant to molecular pathogenesis or
targeted therapy of GC,22,23 a systematic review with respect to
gene CNVs in GC has not been provided.24 In this review, we
discuss the recent CNV researches that shed light on the
molecular pathogenesis of GC, with a specific emphasis on CNVs
and associated genes that display biomarker potentials in GC.

GC INVOLVES CNVS AND OTHER GENETIC ABERRATIONS
GC is a very complex and heterogeneous disease, which is a
multistep process involving deregulation of many oncogenic
pathways. Adenocarcinoma is the major histological type of GC, in
possession of 90–95% of all gastric malignancies. According to
Lauren classification, adenocarcinomas are divided into two
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distinct pathological entities, intestinal and diffuse types, while the
latter has a more aggressive behavior and worse prognosis than
the former.25 Gastric carcinogenesis is considered as a result of a
complex interaction between inheritance and environmental
factors. In addition to hereditary predispositions, GC is also
associated with Hp infection,26–28 obesity, nutritional supplement29

and certain dietary structures, such as high salt diet, food content
with nitrates and smoked meats.30 Exposure to those risk factors
for a long time will eventually result in cancer through a multistep
process.31 Of note, the infection of Hp is associated with certain
features of CNVs in GC. As an example, the loss of 16p occurs in
10% of the Hp-negative samples compared with 0% in the
Helicobacter-positive samples, whereas the gain or amplification
in 16p gain can be found in up to 14.71% of Hp-positive samples
but only in 3.33% of the Hp-negative samples.32

The initiation and progression of GC involve deregulation
of different signaling pathways by genetic and epigenetic
alterations.33–35 Genetic alterations, such as gene mutations, CNVs
and chromosomal translocations, could also influence the expres-
sion of tumor-suppressor genes, oncogenes and other genes,
ultimately contributing to gastric carcinogenesis.36 In recent years,
many micro-RNA (miRNAs) have been supposed as oncogenes or
tumor suppressors by altering the expression of target genes
participated in multiple steps of primary and metastasis GC, which
are related to gene deletions, mutations, promoter hypermethyla-
tion or histone acetylation as well as other mechanisms.37,38

CNVS AFFECT BOTH PROTEIN-CODING AND NON-CODING
GENES
Previous researches have revealed numerous chromosomal DNA
gains and losses in GC patients, with the former far more prevalent
than the latter. Recent high-throughput studies identified gains of
3p22, 4q25, 8q24, 11p13 and 20q13, as well as losses of 1p36 and
9p21 where many cancer-related genes (CTNNB1, MYC, CDKN2A,
TOP2A and so on) are located.39,40 DNA CNVs are significant
influential factors for gene expression, which may affect the
activities of different oncogenic or tumor-suppressing pathways.
This may explain the clinical relevance of many CNVs in GC. It has
been reported that GC patients with lymph node metastasis have
remarkably higher numbers of gains, losses and total CNVs than
those cases without metastasis. In addition, another research
indicated that frequent gains observed on chromosomes 1q, 5p, 7,
8, 13 and 20 and losses observed on chromosomes 1p, 3p, 4, 5q,
9p, 17p, 18q, 19p, 21 and 22.41 Although an increased number of
CNV regions have been identified in GC,42 it still requires further
investigation which of the affected genes may have functional
roles in GC.13,43

Most previous studies have focused on protein-coding genes in
CNV regions, but it is increasingly likely that the expression levels
of long non-coding RNAs and miRNAs are also influenced by CNVs.
A recent study by Fang, Xu and colleagues44 revealed that one-
third of aberrantly expressed long non-coding RNAs are asso-
ciated with CNVs in the GC genome. Because long non-coding
RNAs may have causative roles in oncogenesis,45 it deserves
further investigation whether CNV-associated long non-coding
RNAs may have oncogenic roles and present diagnostic or
prognostic significance in GC. Moreover, recent studies have
demonstrated that miRNA deregulation caused by CNVs may
contribute to gastric oncogenesis.45 As discussed above, CNVs are
clustered in different chromosomal regions and may affect the
expression of different types of genes, therefore contributing to
gastric oncogenesis. In the following paragraphs, we will discuss
significant CNVs in GC according to their locations in the genome
(from different chromosomes to mitochondrial DNA (mtDNA)).

CHROMOSOME 3
PIK3CA gene, which is located on chromosome 3q26.3, is
frequently amplified in GC.46 Importantly, the overexpression of
PIK3CA resulted from gene amplification increased PI3-kinase
activity and phosphorylated Akt level, contributing to aberrant cell
proliferation and apoptosis which are directly associated with
tumorigenesis (schematic representation in Figure 1).47 Further-
more, PIK3CA amplification notably influenced the overall prog-
nosis in GC regardless of early or late stage tumors, suggesting
that this genetic event has an important role in the multistep
process of gastric carcinogenesis.48,49 Taken together, PIK3CA may
function as a GC driver with independent prognostic significance.
In addition, Yoshida et al.50 detected that ribosomal protein S6

kinase2 (S6K2) amplification was associated with poor prognosis,
and S6K2 may function as an upstream driver gene leading to
deregulation of mammalian target of rapamycin (mTOR) in GC.
Beyond that, Shinmura et al.51 suggested that TNK2 (locate on
3q29) amplification may be an independent indicator of poor
prognosis in GC patients, contributing to an increase in the
malignant potential.

CHROMOSOME 5
The adenomatous polyposis coli (APC), a tumor-suppressor gene,
located on 5q21-q22, has a critical role in several cellular processes
including microtubule polymerization, signal transduction and cell
adhesion.52 Its protein product negatively regulates WNT signaling
and its inactivation leads to β-catenin accumulation and
transcriptional activation of genes (MYC, cyclin D1) related to cell
proliferation.53,54 As reported, the chromosome locus of APC is
frequently deleted in GCs,55–59 and its decreased copy number
significantly associated with lymph node invasion and metastasis
in GC patients.55 Moreover, APC deletion was principally found in
advanced GCs, suggesting that it might be involved in the
progression but not initiation of GCs. Furthermore, in a study
concerning 131 sporadic gastric adenocarcinoma samples with
matched normal tissues, Fang et al.60 demonstrated APC copy
number deletions were found in a relatively high percentage
(25.9%) and were associated with lymph node invasion or
metastasis of GC.
The IRX1 tumor-suppressor gene is located on 5p15.33, a cancer

susceptibility locus which is frequently deleted in GC.61 IRX1
expression suppresses cell proliferation, invasion, migration and
oncogenesis both in vitro and in vivo. Guo et al.62 also confirmed
the deletion of IRX1 gene and the crucial functions of IRX1 as a
tumor suppressor in GC. In addition to gene copy number
deletion, the expression level of IRX1 in GC also correlates with
promoter methylation.61

CHROMOSOME 7
MET locates on chromosome 7q21 that codes the hepatocyte
growth factor receptor. The hepatocyte growth factor/MET path-
way dysfunction has been observed in GC and many other human
cancers.63 In GC, the activation of MET signaling is mainly caused
by MET amplification,64 causing increased tumor cell growth,
invasion and angiogenesis.63,65,66

The amplification of MET gene has been found in 0–23% of GCs,
and is associated with advanced disease stages or worse clinical
outcome.67–70 In addition, a recent report showed MET gene
amplification significantly associated with mRNA overexpression
and poor GC patient survival.71 MET gene copy number
amplification was also significantly associated with the depth of
tumor invasion, metastasis and poor prognosis, suggesting it
may be more valuable as a prognostic marker than protein
overexpression.72 The clinical impact of MET amplification is highly
consistent with the role of MET as a functional driver gene in GC.
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Recent studies have suggested that MET CNVs may serve as a
selectable marker for MET inhibitor therapy. MET amplification
labels a subgroup of GC patients who are susceptible to MET-
TKIs.66,73 In addition, the investigation of volitinib as a therapeutic
option for GC patients points out a strong rationale for selecting
patients harboring amplified MET.74 In future clinical studies, the
effectiveness of MET amplification as a marker for treatment
response should be further explored.69

Epidermal growth factor receptor (EGFR) resides on chromo-
some 7p12 and encodes a receptor tyrosine kinase ErbB and the
other members are HER2, HER3 and HER4 (signaling related to
receptor tyrosine kinases are shown in Figure 1).75 Inhibition of
EGFR contributes to cell division, migration and apoptosis in
GC.76,77 EGFR copy number gains associate with an increased risk
of invasion and metastasis in solid tumors including GC,
suggesting its potential significance as a prognostic marker.78–81

As reported, there is a strong relationship between EGFR gene
copy number, protein expression and chromosome 7 polisomy.82

Oh et al.83 further observed that EGFR CNVs existed in a series of
GC cases and discovered that it was associated with unfavorable
prognosis. Another study based on 855 cases reported that gained
EGFR gene copy can be found in 22.7% of GC patients, and it
associates with poor disease outcome.84 These data collectively
demonstrate that EGFR CNV may be a valuable biomarker for GC.

CHROMOSOME 8
The c-MYC gene is located in this chromosome at the 8q24.1
band, encoding a transcriptional factor that regulates genes
related to proliferation, differentiation and apoptosis. The dereg-
ulation of c-MYC has been considered as one of the main events in
the pathogenesis of many cancers, including GC.85,86 Many studies
reported that a significant increase in MYC copy number can be
detected in the carcinogenic process of GC and in gastric cell
lines.87–92 The amplification of MYC has also been suggested with

independent prognostic value on overall survival.93 In addition,
MYC CNVs has a tight connection with the clinicopathological
features of GC. Wang et al.94 reported that gained copy number in
MYC or TNFRSF11B (located at 8q24) genes strongly associated
with the depth of lymph node metastasis, invasion and TNM
stages. In another study, MYC amplification significantly correlated
with MYC mRNA levels and MYC immunoreactivity, suggesting
that MYC CNV indeed contributes to its overexpression in GC.95 In
mucinous gastric carcinoma, c-MYC amplification was correlated
with greater invasion depth and advanced tumor stage, while
these differences were not found in non-mucinous gastric
carcinomas, suggesting that c-MYC amplification in mucinous
gastric carcinoma may be a genetic alteration contributing to the
frequent presentation of advanced stage of MGC.96

The POU5F1B gene (POU domain class 5 transcription factor 1B,
the OCT4 pseudogene), which is located on human chromosome
8q24 near MYC,97 is frequently amplified in GC. Hayashi et al.98

detected that POU5F1B copy number is amplified and over-
expressed in GC, and it also promotes tumorigenicity and tumor
growth. Therefore, POU5F1B amplification seems to be a GC-
associated event that has oncogenic roles.

CHROMOSOME 17
HER2 is located on human chromosome 17q21 and is a member
of the EGFR family. Once bounded to its ligand, Her-2 is
phosphorylated and it functions as a tyrosine kinase that
promotes cell proliferation.99 The reported HER2 amplification in
patients with GC ranged from 6 to 23%, and amplified HER2 gene
was mostly associated with poor outcome.100,101 HER2 gene
amplification was significantly correlated with the depth of
invasion, lymphatic metastasis and the TNM stage.102,103 A recent
report demonstrated H. pylori CagA may induce overexpression of
the Her2 protein by increasing HER2 DNA copy number,104 thus
adding to the connection between environmental factors and

Figure 1. An overview of CNV-affected genes in association with signaling pathways, pathological features and therapeutic targets in GC. The
genes on CNV regions have been highlighted either in red (indicating gain or amplification) or green (loss or deletion). Their relationships with
different signaling pathway have been shown with arrows. In addition, the relevance to disease features ('R'), targeted therapy ('T') and
oncogenic functions ('F') have also been labeled for each gene. The signaling pathways related to the receptor tyrosine kinase genes (MET,
EGFR, FGFR2 and HER2) have been labeled in the graph.
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genomic aberrations. As high incidence of intratumoral HER2
heterogeneity has been reported, it is important to detect HER2
gene status with larger tissue samples.42,105 Many methods for
detecting HER2 CNVs, including flourescence in situ hybridization,
in situ hybridization, chromogenic in situ hybridization and silver
in situ hybridization, have been demonstrated as effective
approaches.42,101,106 Moreover, the HER2:chr17 (chromosome 17)
ratio may be an additional index to eliminate incorrect HER2 status
determination in GC.107

The utilization of molecularly targeted therapeutics against
HER2 has emerged as a significant strategy for advanced GCs.
Trastuzumab, a monoclonal antibody targeting HER2, induces
cellular cytotoxicity and inhibits HER2-mediated signaling
pathways.108 This HER2 antibody has been tested by a randomized
clinical trial (ToGA), which reported prolonged survival time of
patients with advanced GC after combined with chemotherapy.9,109

The European Medicines Agency has also approved trastuzumab
in association with chemotherapy for the treatment of metastatic
gastric adenocarcinoma with minor modifications of the ToGA trial
criteria.110

TP53 gene mapped on 17p13.1 encodes a master regulator of
genomic stability.111,112 In response to DNA damage, the p53
protein triggers multiple cellular responses, including cell cycle
arrest, DNA repair and apoptosis, cellular differentiation, meta-
bolism, angiogenesis and the immune response.113–115 In the
carcinogenic progression of GC, loss of the TP53 locus is one of the
most common mechanisms involved in this gene dysfunction and
is frequently found in GC.87,88,90,116 A significant correlation has
been found between loss of TP53 and gastric precancerous
lesions, suggesting that TP53 CNV may be an early event in gastric
carcinogenesis.117

CHROMOSOME 20
The centrosome-associated kinase aurora A (AURKA) gene is
located on chromosome locus of 20q13, encoding the Aurka
protein that is ubiquitously expressed and regulates cell cycle
events emerging from late S-phase through the M phase.118 In
addition, AURKA overexpression results in the activation of several
carcinogenic pathways including PI3K/AKT, β-catenin, NF-kB and
JAK2-STAT3.119 Accumulating data revealed that AURKA was
frequently amplified and overexpressed in GC,36,120–122 and
AURKA amplification associated with significantly worse
survival.123 A recent study showed copy number gains of AUKRA
were detected in a relative high percentage of GC samples
(30.5%). A positive connection has been found between AURKA
amplification and tumor progression,124 suggesting that AURKA
may have prognostic significance.
The amplification and gain of C20orf11 gene at 20q13.33 almost

discriminated moderately differentiated GC from poorly differ-
entiated type,125 and C20orf11 CNV is correlated with TNM stages
and histological subtypes of GC. It is helpful in highlighting this
interesting gene as a potential marker for the differentiation
status of GC.

CNVS ON OTHER CHROMOSOMES
The octamer transcription factor 1 (OCT1) gene locates on human
chromosome 1, encoding Oct1 protein that belongs to the POU
homeodomain family of transcription factors.126 Interestingly,
OCT1 shares similar downstream target genes as the OCT4
pluripotent factor, and OCT1 has been reported as a determinant
of somatic and cancer stem cells.127 High expression of OCT1
could activate synbindin, which promotes ERK phosphorylation on
the Golgi apparatus.128,129 An recent study revealed that OCT1
overexpression by amplification triggers synbindin-mediated ERK
signaling and increases the aggressiveness of GC cells. The
amplification, mRNA and protein overexpression of OCT1 were

consistently correlated with poor survival of GC patients.130 These
findings suggest that OCT1 may function as an oncogenic driver in
GC, and it may be a promising diagnostic and prognostic marker
for this deadly disease.
Kang et al.131 successfully identified the AMY2A gene as a

1p21.1 homozygous deletion target in GC. It is considered that the
AMY2A gene may function as a tumor suppressor. Gastrokine 1
(GKN1), located on chromosome 2p13.3, has been found as a
potent tumor suppressor that regulates gastric epithelial cell
growth.132 Loss of GKN1 gene copy number has been frequently
observed in GC,133 suggesting that GKN1 inactivation may be
involved in GC development.
FGFR2 gene locates on 10q26, and amplifications of FGFR2

(reported in 4–10% of GC) associates with poor prognosis in
diffuse type GC.134,135 FGFR2 encodes a receptor tyrosine kinase
regulating cell growth and development.136 FGFR2 amplification
was detected in 4.1% GC using formalin-fixed paraffin-embedded
samples, which associated with poorer outcome. In addition, the
development of FGFR2 inhibitors for the treatment of GC in
consideration of FGFR2 amplification has been proposed.137

The variously sized 11q13.3 amplicon containing cyclin D1
(CCND1) and oral cancer overexpressed 1 (ORAOV1) are among
the most frequent amplification events in GC.138,139 The oncogenic
role of CCND1 in GC is supported by its function on gearing the
cell cycle from G1 phase to S phase.140 Stahl et al.141 found that
CCND1 amplification often represents an early event during tumor
development. Another study also suggest that the CCND1 gene
may have a critical role in the development or progression of
GC.142 Kang et al.142 reported that the ORAOV1 gene at the
11q13.3 region is associated with lymphatic metastasis, suggest-
ing that ORAOV1 may have prognostic significance in GC.
Interestingly, it has been reported that miR-23a in amplified

19p13.13 loci targets metallothionein 2 A (MT2A) and promotes
growth in GC cells.143 By integrating CNV and miRNA profiles in
the same samples, the authors identified eight miRNAs (miR-
-1274a, miR-196b, miR-4298, miR-181c, miR-181d, miR-23a,
miR-27a and miR-24-2) that were located in the amplified regions
and were upregulated in GC. The amplification of miRNAs were
confirmed by real-time PCR and in situ hybridization assays.
Knockdown of miR-23a expression neutralized the effect of CNV
and inhibited GC cell proliferation, suggesting potential thera-
peutic value of CNV-associated miRNAs in GC.

MITOCHONDRIAL DNA (MTDNA)
Human mtDNA is a 16.6 kb double-stranded circular DNA
molecule, with a range of few hundreds to several thousands
copies of mtDNA present in each cell, encoding 13 polypeptides of
respiratory enzyme complexes, transfer RNAs and 2 ribosomal
RNAs required for protein synthesis in mitochondria.144 Several
somatic mutations in the mtDNA have been observed in GCs,
including a very large deletion of 4977 bp and mutations in the
D-loop region.145 Mitochondrial dysfunction by mtDNA somatic
mutations and CNVs might have an important role in the
malignant progression of GC owing to its important roles in
energy production, cell metabolism and apoptosis.146 MtDNA
copy number losses and point mutations are the two most
common type of mtDNA alterations in GCs.147 Significant efforts
have been made to develop therapeutic strategies by targeting
mitochondria in cancers.148,149

Interestingly, Fernandes et al.150 discovered that mtDNA
quantification approaches by blood sampling would allow an
early detection of GC, suggesting the diagnostic potential of
mtDNA CNV. In addition, Wen et al.151 demonstrated that the
mtDNA copy number deletion may be particularly notable in ill-
defined GCs of clinicopathological stages III and IV.
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METHODS FOR DISCOVERING CANCER-DRIVER GENES
WITH CNVS
One major challenge in genome-wide CNV research is to identify
cancer-driver genes that cause functional abnormalities. In recent
studies, efforts have been made to pinpoint cancer-driver genes
by combining cancer genomic data including gene CNVs,
mutations and expression levels. The dominant effects of
cancer-driver genes (DEOD) algorithm has been developed based
on a partial covariance selection approach, which builds a gene
network based on the above-mentioned data types.152 In
comparison, the DawnRank algorithm was designated to
identify personalized driver genes in cancer.153 Along with
the expansion in cancer genomic datasets and continuous
improvement of data-mining methods, the identification of
cancer-driver genes may bring enormous therapeutic opportu-
nities in the future.

CONCLUSIONS
GC is a complex, multistep process that involves aberrant CNV
events in different genomic regions. Frequently occurring CNVs in
GC result from preferential selections that favor the oncogenic
process, thus the CNV-associated genes should be further
characterized for their roles in gastric oncogenesis. Given the rich
information that CNVs may provide in regard to disease signaling
patterns and clinicopathological features, future studies in this
field would provide enomous mechanistic insights and facilitate
the development of novel biomarkers for this deadly disease.
Challenges in accurate detection of CNV in the presence of
intratumoral heterogeneity should be further tackled to obtain
highly confident CNV information for guiding GC diagnosis,
prognosis and targeted therapy.
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