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Ileal Crohn’s disease (CD) arising from the alteration of intestinal homeostasis is characterized by two
features, namely a decrease in Paneth cell-produced antimicrobial peptides that play a key role in
maintaining this balance and an increase in NOD2, an intracellular sensor. Although mutations in NOD2
are highly correlated with the incidence of CD, the physiological role of NOD2 in intestinal immunity
remains elusive. Here, we show that NOD2 can down-regulate the expression of human enteric
antimicrobial peptides during differentiation of the Paneth cell lineage. This finding, which links the
decrease of human enteric antimicrobial peptides to increased NOD2 in ileal CD patients, provides a new
view into the pathogenesis of ileal CD.

C
rohn’s disease (CD), the main clinical phenotype of inflammatory bowel disease (IBD)1, is a chronic,
relapsing inflammatory disorder2. Although CD can occur anywhere in the gastrointestinal tract, it
primarily affects the terminal ileum where as many as 75% of CD patients have inflammation3. The

terminal ileum is characterized by two relevant features: the greatest number of Paneth cells4 that are generally
absent from the colon and rectum, except in IBD5, and the highest microbial density, which is low in healthy
proximal small intestine3,6. Human Paneth cells serve as a key arm of innate mucosal immunity to maintain the
intestinal homeostasis between a host and its colonizing microbes by secreting antimicrobial peptides7,8. These
antimicrobial peptides are composed predominantly of human enteric a-defensin 5 and 6 (HD5 and HD6) as well
as lysozyme and secretory phospholipase A2 (sPLA2), to a lesser extent9. These peptides not only have a strong
antibacterial function against Gram-positive and Gram-negative bacteria, but they also have activity against
viruses, fungi and protozoa7,10–12. Their antimicrobial activities contribute to their roles in intestinal innate
immunity. In addition, human Paneth cells express NOD213, a member of the nucleotide-binding oligomeriza-
tion domain-leucine-rich repeat (NOD-LRR) proteins14, and the Paneth cell expression of NOD2 is increased in
CD patients13. Although mutations in NOD2 are highly correlated with a diminished expression of human enteric
a-defensin15 and the incidence of CD16,17, the physiological role of NOD2 in intestinal immunity remains elusive.

The purpose of this study was to determine whether NOD2 may regulate the expression of human enteric
antimicrobial peptides. For this purpose, we should choose a suitable cell line because human Paneth cells do not
survive under in vitro culture conditions13,18. Because Caco2 intestinal epithelial cells can display characteristics of
small intestinal epithelial differentiation in vitro19,20 and constitutively express the NOD2 gene13, they are suitable
for in vitro studies to investigate the physiological role of NOD2 in specialized intestinal epithelial cells such as
Paneth cells.

Results
Activation of FGFR-3-mediated signaling induces in vitro differentiation of Caco2 cells along the Paneth cell
lineage. Although Caco2 cells can spontaneously differentiate along the enterocyte lineage in vitro21,22, they also
express abundant FGFR-323, which is a critical regulator of Paneth cell differentiation during mouse gut
development24. Therefore, we treated Caco2 cells with FGF9, a high affinity ligand for FGFR-325, and
determined whether the activation of FGFR-3-mediated signaling induces in vitro differentiation of Caco2
cells along the Paneth cell lineage. We found that the mRNA expression of SI and APOA1, which encode two
enterocyte differentiation markers25, was greatly decreased. These significant decreases were sustained for at least
72 h after a consecutive 3-day treatment with FGF9 (Fig. 1A and 1B), suggesting that the differentiation of Caco2
cells along the enterocyte lineage is suppressed and that this differential inhibition is stable. In contrast, we found
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that the mRNA expression of HD5, HD6, lysozyme and sPLA2, which
encode four Paneth cell differentiation markers, was greatly
increased after a consecutive 3-day treatment with FGF9 (Fig. 1C–
1F). In addition, we found that these significant increases were
sustained for at least 24 h after a consecutive 3-day treatment with
FGF9 (Fig. 1C–1F). These results indicate that the activation of
FGFR-3-mediated signaling can induce the in vitro differentiation
of Caco2 cells along the Paneth cell lineage and maintain this
induction of differentiation for a period of time.

NOD2 signaling down-regulates the expression of human enteric
antimicrobial peptides during differentiation of the Paneth cell
lineage. To determine the effect of the NOD2 gene on the expression
of human enteric antimicrobial peptides, we first asked whether
NOD2 regulates FGF9-induced expression of human enteric
antimicrobial peptides during differentiation of the Paneth cell
lineage. We utilized FGF9 with or without MDP, an agonist for
NOD226, to stimulate Caco2 cells for 3 consecutive days and
examined the mRNA expression of HD5, HD6, lysozyme and
sPLA2 using real-time PCR. We found that the mRNA expression
of HD5, HD6, lysozyme and sPLA2 was decreased approximately
10.6-, 9.6-, 2.7- and 2.3-fold, respectively, in Caco2 cells treated
with MDP plus FGF9 compared with FGF9 only (Fig. 2A, 2C, 2E
and 2G). This result indicates that MDP-NOD2 signaling can down-
regulate the expression of human enteric antimicrobial peptides,
especially enteric a-defensin, during differentiation of the Paneth
cell lineage.

To further substantiate the role of NOD2 in regulating FGF9-
induced expression of human enteric antimicrobial peptides, we
transfected Caco2 cells with a NOD2-specific siRNA, followed by a
consecutive 3-day stimulation with FGF9 or FGF9 plus MDP. We

found that the mRNA expression of HD5, HD6, lysozyme and sPLA2
was significantly higher in Caco2 cells transfected with NOD2-
siRNA than in untransfected or mock transfected cells (Fig. 2B,
2D, 2F and 2H), suggesting that NOD2 signaling can down-regulate
the FGF9-induced expression of human enteric antimicrobial pep-
tides. Consistent with this result, the protein expression of HD5 and
HD6 was significantly increased in FGF9-stimulated NOD2-siRNA-
transfected cells compared with untransfected or mock transfected
cells (Fig. 3A and 3B), thus further confirming that NOD2 signaling
can down-regulate the expression of human enteric antimicrobial
peptides during differentiation of the Paneth cell lineage; however,
we found no significant differences in the mRNA expression of HD5,
HD6, lysozyme and sPLA2 between FGF9-stimulated NOD2-siRNA-
transfected cells and NOD2-siRNA transfectants stimulated with
FGF9 plus MDP (Fig. 2B, 2D, 2F and 2H), suggesting that the
down-regulated mRNA expression of human enteric antimicrobial
peptides is indeed mediated by MDP via NOD2. In addition, we
found that NOD2 protein expression was significantly lower in
NOD2-siRNA transfected cells than in mock or untransfected cells
(Fig. 3C), thus confirming the efficiency of NOD2-knockdown via
siRNA.

NOD2 itself differentially regulates the expression of human
enteric antimicrobial peptides. We next determined whether
NOD2 itself can affect the expression of human enteric
antimicrobial peptides. We treated Caco2 cells with the NOD2
agonist MDP and then determined the mRNA expression of HD5,
HD6, lysozyme and sPLA2 using real-time PCR. We found that the
mRNA expression of HD5 and HD6 was increased approximately
2.8- and 1.7-fold, respectively, in Caco2 cells after a consecutive 3-
day treatment with MDP compared with untreated control (Ctrl)

Figure 1 | Effect of FGFR-3-mediated signaling on the expression of intestinal lineage differentiation markers in Caco2 cells. Enterocyte markers:

sucrase-isomaltase (SI; A) and apolipoprotein A-1 (APOA1; B). Paneth cell markers: human a-defensin 5 (HD5; C), human a-defensin 6 (HD6; D),

Lysozyme (E) and secretory phospholipase A2 (sPLA2; F). Caco2 cells were treated with FGF9 (10 ng/ml) daily for 3 consecutive days. After that, the cells

were not treated with FGF9 but their medium was changed every 24 h. Total RNA was isolated and mRNA levels were determined using real-time PCR

and normalized to 18 S rRNA at the indicated time points after the 3-day stimulation with FGF9. Control (Ctrl) cells were not treated with FGF9. Data are

shown as the mean 6 SD of three independent experiments; *P , 0.05, **P , 0.01, ***P , 0.001 vs. control groups.
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cells (Fig. 2A and 2C). This result demonstrates that NOD2 itself can
slightly up-regulate the expression of human enteric a-defensin 5
and 6, which is consistent with the report showing the decreased
expression of Paneth cell a-defensins in NOD2-knockout mice27;
however, the mRNA expression of lysozyme and sPLA2 was not
significantly different between MDP-treated cells and untreated
control (Ctrl) cells (Fig. 2E and 2G), suggesting that NOD2 itself
does not affect the expression of lysozyme and sPLA2.

FGF9 does not regulate NOD2 expression during differentiation
of the Paneth cell lineage. Finally, we determined whether FGF9
treatment affected NOD2 expression during differentiation of the

Paneth cell lineage. We treated Caco2 cells with FGF9 and
determined the protein expression of NOD2 via immunoblotting at
different times of induction of cell differentiation. We found that
NOD2 protein expression was not significantly different between
FGF9-treated cells and untreated control (Ctrl) cells (Fig. 4). This
result indicates that FGF9 does not regulate NOD2 expression during
differentiation of the Paneth cell lineage.

Discussion
This study assessed whether NOD2 can regulate the expression of
human enteric antimicrobial peptides. Our data in Caco2 cells show
that NOD2 can down-regulate the expression of human enteric anti-

Figure 2 | Differential regulation of mRNA expression of HD5 (A, B), HD6 (C, D), Lysozyme (E, F) and sPLA2 (G, H) by different stimuli in Caco2
cells. (A, C, E, G) Caco2 Cells were treated with MDP (10 mg/ml), FGF9 (10 ng/ml) or FGF9 (10 ng/ml) plus MDP (10 mg/ml) daily for 3 consecutive

days. (B, D, F, H) Caco2 cells were transfected with transfection reagent only (mock) or NOD2 siRNA (50 nM) for 6 h, then incubated with normal

growth medium for an additional 18 h. Subsequently, these cells were treated with FGF9 (10 ng/ml) or FGF9 (10 ng/ml) plus MDP (10 mg/ml) daily for 3

consecutive days. Total RNA was isolated and mRNA levels were determined using real-time PCR and normalized to 18 S rRNA. Control (Ctrl) cells were

not treated. Data are shown as the mean 6 SD of three independent experiments; n.s., not significant, *P , 0.05, **P , 0.01, ***P , 0.001.

Figure 3 | Down-regulation of FGF9-mediated protein expression of HD5 (A) and HD6 (B) by NOD2 in Caco2 cells. (A, B) Caco2 cells were transfected

with transfection reagent only (mock) or NOD2 siRNA (50 nM) for 6 h, then incubated with normal growth medium for an additional 18 h.

Subsequently, these cells were treated with FGF9 (10 ng/ml) daily for 3 consecutive days. Whole-cell extracts were analyzed for HD5 by immunoblotting.

(C) Transfection efficiency was tested after a 72-h transfection with siRNA via immunoblotting. Top, quantitative analysis of proteins; bottom,

representative immunoblot images. Data are shown as the mean 6 SD of three independent experiments; n.s., not significant, *P , 0.05; **P , 0.01;

***P , 0.001.
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microbial peptides during differentiation of the Paneth cell lineage.
We found that the Caco2 cells treated with FGF9 can be induced into
differentiation along the Paneth cell lineage (Fig. 1). During this
induction of cell differentiation, the mRNA expression of human
enteric antimicrobial peptides (HD5, HD6, Lysozyme and sPLA2)
was decreased in the presence of the stimulation of NOD2 agonist
MDP but was increased when NOD2 was knocked down by a NOD2-
specific siRNA (Fig. 2). In addition, we found that the protein levels
of HD5 and HD6, the main constituents of human enteric antimi-
crobial peptides, were increased in FGF9-stimulated NOD2-siRNA-
transfected cells compared with untransfected cells (Fig. 3), thus
further confirming that NOD2 can down-regulate the expression
of human enteric antimicrobial peptides during differentiation of
the Paneth cell lineage.

Whether the molecular mechanism of NOD2-mediated down-
regulation of expression of human enteric antimicrobial peptides is
dependent on or independent of the ability of NOD2 to recruit and
activate downstream cofactor RICK or others remains unknown;
however, previous findings show that NOD2 activated by MDP
can bind and activate RICK, a caspase recruitment domain
(CARD)-containing serine/threonine kinase28,29. In conjunction
with our own findings, we speculate that FGFR-3-NOD2 signaling
may recruit a kind of signaling molecules different from RICK to
inhibit FGFR-3-induced expression of human enteric antimicrobial
peptides. We hypothesize that this signaling pathway may enhance
the inhibition efficiency through recruiting more of that kind of
signaling molecules when NOD2 is simultaneously activated upon
MDP stimulation.

Although NOD2 can down-regulate FGF9-induced expression of
HD5, HD6, Lysozyme and sPLA2, NOD2 itself can up-regulate the
expression of HD5 and HD6. We found that the mRNA expression of
HD5 and HD6 was increased in MDP-stimulated cells compared
with untreated control cells (Fig. 2). This result is in line with the
previous report showing the decreased expression of Paneth cell a-
defensins in NOD2-knockout mice27. Because FGF9 does not affect
NOD2 expression during differentiation of the Paneth cell lineage
(Fig. 4), it is extremely interesting to explore the mechanism by
which NOD2 dually regulates the expression of human enteric a-
defensins under the different types of NOD2 stimuli.

In this study, we used Caco2 cells, serving as a functional modal, to
investigate whether NOD2 regulates the expression of human enteric
antimicrobial peptides in the Paneth cell lineage. This cell line is
suitable because primary Paneth cells do not survive in vitro13,18;
however, Caco2 cells can display characteristics of small intestinal
epithelial differentiation in vitro21,22, suggesting that they maintain
intestinal stem cell functions. In addition, they constitutively express
the NOD2 gene13 and also express abundant FGFR-325, which is a
critical regulator of Paneth cell differentiation during gut develop-
ment24. Finally, we found that Caco2 cells activated by FGFR-3-
mediated signaling for 3 consecutive days express Paneth cell
lineage-specific genes. Thus, Caco2 cells are suitable for this in vitro
study to investigate the role of the NOD2 protein in the Paneth cell
lineage.

In summary, our results indicate that NOD2 can down-regulate
the expression of human enteric antimicrobial peptides during dif-
ferentiation of the Paneth cell lineage. In light of NOD2 over-
expression in CD patients13, our data provide a plausible explanation
for the diminished levels of human enteric antimicrobial peptides in
ileal CD patients. This finding is significant because a strongly advo-
cated view is that the ineffective bacterial clearance that results from
the reduced expression of human enteric antimicrobial peptides27

induces and sustains the abnormal adaptive immune responses
observed in CD patients30,31. In addition, T helper 1 (Th1) cytokines
such as factor a (TNFa) and interferon-c (IFNc) can up-regulate
NOD2 expression in intestinal epithelial cells32–34. Based on these
findings, a hypothesis for the role of NOD2 in the pathogenesis of
CD is proposed (Fig. 5) in which NOD2 constitutes a critical link
between the innate and adaptive immunity in the intestinal tract.
Indeed, anti-TNFa, anti-IFNc or anti-interleukin-12 administration
is an effective therapeutic strategy in CD35–41, although none are a
permanent cure for CD. As discussed above, we speculate that if these
cytokine-based therapies work by interrupting the over-expression
of NOD2, the most effective therapy for CD patients will be directed
at antagonism of NOD2-mediated inhibition of human antimicro-
bial peptides.

Methods
Cell culture and stimulation. Caco2 cells (ATCC) were cultured in Dulbecco’s
modified Eagle medium (HyClone) supplemented with 20% fetal calf serum
(HyClone), 2 mM L-glutamine, 100 U/ml Penicillin, and 100 mg/ml streptomycin at
37uC in a humidified atmosphere with 5% CO2. The cells were used between passages
15 and 30. For all of the experiments, to better mimic the steric conditions existing in
the intestine in vivo, the cells were plated at a subconfluent cell density onto 6-well

Figure 4 | No Effect of FGF9 on protein expression of NOD2 in Caco2
cells. Caco2 cells were treated with FGF9 (10 ng/ml) for the indicated time

points, after which whole-cell extracts were prepared and analyzed for

NOD2 via immunoblotting. Top, quantitative analysis of proteins;

bottom, the representative immunoblotting image from three

independent experiments. Data are shown as the mean 6 SD of three

independent experiments; n.s., not significant.

Figure 5 | Schematic diagram of the proposed hypothesis for the role of NOD2 in the pathogenesis of ileal CD. Th1 cytokines such as TNFa and IFNc

up-regulate NOD2 expression. A large increase in NOD2 levels causes a large decrease in antimicrobial peptides including HD5, HD6, lysozyme and

sPLA2, leading to weakened mucosal defenses,and alterations in the luminal microbes. These changes lead to the destruction of intestinal homeostasis,

which then induces and/or sustains inflammation in susceptible individuals. This pathogenesis ultimately results in ileal CD. Abbreviations: NOD2,

nucleotide-binding oligomerization domain 2; CD, Crohn’s disease; TNFa, tumor necrosis factor a; IFNc, interferon-c; HD5, human a-defensin 5; HD6,

human a-defensin 6; sPLA2, secretory phospholipase A2.
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Millicell hanging filter inserts (3 mm pore size, Polyethylene Terephthalate,
Millipore) that allow free access of media to their apical and basolateral sides. Media
were changed every 24 h. To determine the role of NOD2, fibroblast growth factor 9
(FGF9) (10 ng/ml; R&D Systems), a high affinity ligand for the fibroblast growth
factor receptor-3 (FGFR-3); muramyl dipeptide (MDP) (10 mg/ml; InvivoGen), an
agonist for intracellular NOD2; and FGF9 (10 ng/ml) plus MDP (10 mg/ml) were
added to both sides of the inserts daily starting at 24 h post-plating and ending at 72 h
post-plating.

SiRNA. After 24-h culture with antibiotic-free normal growth medium containing
20% fetal calf serum, Caco2 cells that were approximately 60% confluent were
transfected with the NOD2 siRNA (50 nM; Santa Cruz Biotechnology) and
Transfection Reagent (Santa Cruz Biotechnology) mixture or Transfection Reagent
only (Mock) for 6 h, then incubated with normal growth medium for an additional
18 h. Subsequently, these cells were stimulated upon the addition of FGF9 (10 ng/ml)
or FGF9 (10 ng/ml) plus MDP (10 mg/ml) daily for 3 days. After that, total RNA was
isolated and analyzed using real-time PCR. Whole-cell extracts were prepared and
analyzed via immunoblotting. The transfection efficiency was tested after a 72-h
transfection with siRNA via immunoblotting.

Real-time quantitative RT-PCR. Total cellular RNA was isolated using the RNAiso
Plus Kit (Takara) and then cDNA synthesis was performed using the PrimeScript RT
reagent Kit with gDNA Eraser (Takara) to eliminate genomic DNA contamination.
Real-time PCR was performed in triplicate using the LightCycler 480 System (Roche).
Each 20 ml PCR reaction contained 5 ml of cDNA corresponding to 25 ng of RNA as a
template, 0.5 mM of each primer (table 1), and 1 3 LightCycler 480 SYBR Green I
Master (Roche). The samples were loaded into the LightCycler 480 Multiwell Plate 96
(Roche) and incubated for an initial denaturation at 95uC for 10 min followed by 45
cycles, with each cycle consisting of 95uC for 10 s, a ‘‘touchdown’’ of 21uC/cycle from
65uC 60uC for 20 s, followed by 72uC for 20 s. Relative mRNA levels were calculated
according the 22DCT method, using 18 S rRNA as the reference and internal standard.

Immunoblotting. The cells were lysed for 30 min on ice in RIPA lysis buffer (10 mM
Tris (pH 8.0), 150 mM NaCl, 1% Nonidet P-40, 0.1% SDS, and 0.5% deoxycholate,
supplemented with the protease inhibitor PMSF. After being centrifuged at 14,000 3

g for 30 min at 4uC the supernatants were collected. SDS-polyacrylamide gel
electrophoresis and western blotting were performed in accordance with standard
protocols. Monoclonal mouse anti-HD5 (Millipore), anti-HD6 (Biorbyt) and
polyclonal goat anti-NOD2 (Santa Cruz Biotechnology) were diluted at 151000,
151000 and 15200, respectively. Monoclonal rabbit anti-GAPDH (Cell Signaling
Technology) was diluted at 151000. Secondary antibodies were all diluted at 154000.
Image J software was used to quantify and analyze the density of the protein bands.

Statistical Analysis. The results are shown as the mean 6 standard deviation.
Statistical significance was determined by one-way analysis of variance with Tukey’s
multiple comparisons under equal variances or with Dunnett T3’s multiple
comparisons under unequal variances; a value of P , 0.05 was considered statistically
significant.
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